
Tale of Two Editors: Sinopia

Introduction
● Linked data editor and

supporting backend API and
data storage

● Developed by LD4P (Linked
Data for Production) funded by
Andrew W. Mellon Foundation

● help.sinopia.io
● stage.sinopia.io

2

History
● Initially a fork of the original Library of Congress BIBFRAME Editor
● Major Refactoring began in 2018
● Initial Sinopia Stack

○ Included a separate forked copy of the Profile Editor
○ Linked Data Platform Trellis for storing RDF
○ Deployed on Amazon Web Services
○ Integration with Question Authority

● Subsequent work cycles
○ Migrated from Trellis to MongoDB
○ Refactored templates to RDF, removed Profile Editor
○ Copied UI elements from current LOC editor
○ User dashboard for accessing recently used search queries, templates, and

resources

Community-Focused & Collaborative Editing

● From Sinopia s̓ inception, design and implementation supports
multiple groups

● Groups can be institutions (i.e Stanford University, Cornell
University, Library of Congress) or organizations (PCC, MLA)

● Existing Sinopia implementation allows universal editing by any
authenticated user BUT

● Current work-cycle is adding permissions to restrict editing by users
in specific groups, still universal read access

General RDF Editor and Datastore

● Users can use any ontology in their resource templates
● However, Sinopia is optimized for BIBFRAME

○ Search
○ Rdf2marc
○ UI enhancements

● Examples of other ontologies
○ Schema.org
○ Performed Music Ontology
○ RDA FRBR

● Users can also Sinopia API for non-BIBFRAME record management,
backend datastore agnostic to what RDF is stored, however RDF
resources do have BIBFRAME-specific metadata

Agile Software Development
● Sinopia team organization and workflows based on Agile software

development Best practices:
○ Work in Short 1-2 week sprints that together make up a work-cycle, typically 6-8

weeks in length
○ Unit and integration tests for functionality and bug fixes
○ Continuous integration, tests are run and must pass to merged into main code

branches
○ Get immediate feedback from users for UI and functionality changes

● Iterative process, flexible to changing requirements, resource
availability, and developer experience

● Stakeholders and users drive requirements
● “Kanban”-like project boards track tasks through identification,

assignment, development, and deployment

Third-Party Integrations

● Focus of latest LD4P grant, “Closing the Loop”
● Sinopia PCC resources will be sent to

○ Casallini s̓ ShareVDE
○ OCLC Entity back-bone

● Current work-cycle building extract-transform-load workflows
○ Extract Sinopia resources
○ Transform RDF to MARC21 and JSON records
○ Load records into ILS and Library Services Platforms

Thank-you! Questions?
Sinopia Environments:

● Development at https://development.sinopia.io/
● Stage at https://stage.sinopia.io/
● Production at https://sinopia.io/

Code Repositories:

● Sinopia Editor at https://github.com/ld4p/sinopia_editor
● Sinopia API at https://github.com/ld4p/sinopia_api
● Other supporting projects at https://github.com/ld4p

https://development.sinopia.io/
https://stage.sinopia.io/
https://sinopia.io/
https://github.com/ld4p/sinopia_editor
https://github.com/ld4p/sinopia_api
https://github.com/ld4p

Matt Miller
Network Development and MARC Standards Office
Library of Congress

LC Bibframe Editor
BIBFRAME Workshop in Europe 2021

Starting Point

• An editor to advance BF100

• Designed by the catalogers

• Bibframe opinionated

• Make use of recent web development practices: reactive, stateful, etc.

Timeline

• Late 2019 - Early 2020: Contracted SAMHÆNG to work with pilot catalogers
to design new editor

• Mid 2020 - Development began

• Mid 2021 - Soft launch

• Rest of 2021 - Stabilization, bug fixes, feature development

Technical Considerations
• Powered by profiles (uses the old profile editor)

• Communicates in RDF/XML - compliments LC’s ecosystem

• Client heavy, builds XML payloads client side

• Reactive, uses Vue.js

• Simple Dockerized stack:

• MongoDB powered LDP backend

• Node Express backend API

• Nginx routes and servers client
Web

Client

LDP/
API

Docker id.loc.gov

BFDB

Mark
Logic

Quick Look

Devil is in the details, rubber meets the road, <insert idiom here>

• When your horizon is production you will unlock new layers of requirements.

• In the new editor’s case that includes

• Design / Usability requests

• Features that support existing workflows

• Hidden requirements

• In our case we are building in an environment of having the same cataloging
system for the last 20 years.

• Need to support converting BF records back to MARC

Our development cycle
• Message board with all participants, they interact and ask questions give

suggestions, feature requests, etc.

• Monthly all participants meetings: announcements, updates, demos, etc.

• Monthly division BF meetings

• Weekly Office Hours meeting

• These generate issues and feature requests, we have a list where people
"vote" on what they want prioritized

• New versioned release every couple weeks

Examples: Supporting Workflows
• Copy cataloging workflow.

• Needed to quickly validate
a subject heading to
determine if its needs
review

• Checkout Kevin Ford’s talk
on this from LD4: https://
sched.co/joAW

https://sched.co/joAW
https://sched.co/joAW
https://sched.co/joAW
https://sched.co/joAW

Examples: More(?!) complicated interface
• More textual based

subject editing interface

• Designed for catalogers
who know what
headings they want to
use and just want to
type them quickly

• Needs to support all
possible pre-
coordinated heading
construction

• Can be turned off. Make
UI features toggleable

Examples: Hidden/Soft Requirements
• Non-latin input is very

important. An ecosystem
of solutions/workarounds
had developed for our ILS
to input diacritics

• Something the new
editor had to support,
20 years of muscle
memory is a high hurdle

• Toggleable shortcut
“packs” that replicate
existing diacritic
shortcuts used in the
ILS

Examples: Reducing New Complexity
• Cataloging now involves

keeping tack of Works vs
Instances vs Items.
Feedback that is was hard
to do in the editor
interface.

• A little mini-map of the
layout of the resource to
help communicate what is
going on in the record/
resource.

Next Steps
• Continued development cycles

• Once stabilized, development of more ambitious feature requests

• Starting to get feedback that is more “It would make things easier if the editor
did…” Making the editor a way to make cataloging easier/quicker.

Thanks for listening!
Matt Miller

mattmiller@loc.gov

@thisismmiller

mailto:mattmiller@loc.gov

